PHYSICAL REVIEW E 73, 066612 (2006)
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Large amplitude standing waves of spatially periodic sine-Gordon equations are excited and controlled by
sweeping the frequency of a small, spatially modulated driving oscillation through resonances in the system.
The approach is based on capturing the system into resonances and subsequent adiabatic, persistent phase

locking (autoresonance) yielding control via a single external parameter (the driving frequency). Plasma os-
cillations in the system are excited by using a small amplitude drive in the form of a chirped frequency
standing wave, while emergence of autoresonant breather oscillations requires driving by a combination of

small amplitude oscillation and standing waves.
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I. INTRODUCTION

Nonlinear wave equations in fluids and plasmas fre-
quently have different classes of solutions. Suppose, one de-
sires to generate (experimentally or in simulations) a wave
form u of a particular class in a system governed by wave
equation N(u):O (]<J being a nonlinear spatiotemporal differ-
ential operator). The standard procedure for achieving this
goal requires accurate realization of some nontrivial initial/
boundary conditions. Alternatively, in searching for a more
realizable approach, one can start from trivial initial/
boundary conditions, but consider a perturbed problem

N(u)=¢f, where <1 and f is a function on space time. Can
one find a simple f, such that u in the perturbed system
arrives at a vicinity of the desired nontrivial solution in the
process of evolution? Recently, this question was addressed
in the context of excitation of multiphase waves of the
Korteweg-de Vries (KdV) and nonlinear Schrodinger (NLS)
equations [1,2]. Here, we pose a similar problem in applica-
tion to the periodic sine-Gordon (SG) system, i.e., study the
driven SG problem

U, — Uy, +sin u = gf(x,1), (1)

where both field u and the driving function f are subject to
periodic boundary conditions u(x,?)=u(x+L,?), f(x,1)=f(x
+L,1). The sine-Gordon equation (¢=0) is one of the most
important equations of nonlinear physics and describes many
physical applications [3]. It has a variety of solutions, a
single phase wave train, u(x,t)=u(6), =kx—wt, being the
simplest example. If one adds periodic boundary condition,
standing SG wave solutions exist of form [4]

u(x,t) =4 tan ' [F(x)G(9)], (2)

where F(x) and G(r) are expressed in terms of Jacobian el-
liptic functions, which are periodic in x and ¢, respectively.
Well known realizations of Eq. (2) are breather and plasma
oscillations. In the breather case F(x)=Adn[Bx,m,] and
G(t)=sn(yt,m,), while, for plasma oscillations, F(x)
=Acn[Bx,m,] and G(r)=cn(yr,m,). There are five constants
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in the definition of each of these standing waves, i.e., 8,7,
“amplitude” A, and moduli m, , of the elliptic functions, but
only two of these constants (say m, ,) are independent, while
others are related algebraically. For example, in the breather
case [5], B=vA (the dispersion relation) and AZ(1 —m%)
=m3/A%=(*+ %'~ 1. For plasma oscillations, in contrast
[5], the dispersion relation is y*—8%>=(1-A?)/(1+A?), while
BA(m—A?)=y*(A2—m3)=A%(1+A%)2 Note that Eq. (2) rep-
resents the simplest two-phase solutions of the SG equation.
Their two-phase structure can be emphasized by using the
notation u=U(6,, 6,;m,,m,), where U is 27 periodic with
respect to phase variables 6;(x) and 6,(z), describing oscilla-
tions of either F(x) or G(z). The wave numbers associated
with the spatial oscillations are «=6,,=78B/K(m,) and
73/[2K(m;)] in the breather and plasma cases, respectively,
K is the complete elliptic integral of the first kind, while the
frequency of temporal oscillations in both cases is = 6,,
=1y/[2K(m,)]. In this work we seek simple perturbations &f
in (1), yielding excitation of large amplitude breather or
plasma oscillations, starting from zero initial conditions.
Small amplitude limits of these waves are important in this
context. Plasma oscillations reduce to linear standing waves
u=A cos(xx)cos(dr) as A— 0. In contrast, breathers exist for
k<1 only, and their amplitudes are finite, A>A ;=K
—(k72=1)"2. Nevertheless, for smaller A, a spatially uniform
solution u(f)=4 tan™'[Asn(yt,m,)] (pendulum oscillations),
having linear limit u(f)=A sin({)s), can be viewed as a re-
duced (m;=0) form of breather oscillations.

Now we outline our idea of controlling breather and
plasma oscillations by adiabatic synchronization. Let the per-
turbing function in Eq. (1) be an oscillation f
=fo(x)cos [ w(t)dt having slowly varying (chirped) frequency
() and spatially modulated amplitude f(x)=f;(x+L).
Then, assume that the driven system allows an approximate
synchronized solution of form (2), where parameters are slow
functions of time, such that this solution is phase locked with
the drive at all times. In other words, we assume u
~U(6y,6,;m;,m,), where m;, and Q=6,, are slow func-
tions of time (the wave number x=6,, is constant due to
periodic boundary conditions) such that 6, =2mx/L (assum-
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ing lowest order spatial mode) and 6, =~ [w(r)dt at all times.
The phase locking assumption means matching of the wave
numbers and frequencies, i.e., k=27/L and )= w(r). This,
in turn, yields two additional algebraic constrains on param-
eters m, , of the standing wave, while its phases 6, , are also
known approximately by phase locking assumption. There-
fore, if the above-mentioned synchronized solution exists, it
is fully controlled by a single external parameter [the fre-
quency () of the driving perturbation], allowing excursion
in the solutions space of the nonlinear system. We shall see
below that under certain conditions, the passage through
resonances in the driven SG system yields the desired per-
sistent phase locking between slowly varying driving pertur-
bations (synchronizing perturbations in the following) and
subsequent emergence of large amplitude standing waves.
The analysis of this excitation process comprises the main
goals of the present work.

The periodic, ac-driven SG system was studied in the past
for constant frequency drives [6]. The idea of passage
through resonance and subsequent synchronization for excit-
ing single phase SG wave trains was suggested more recently
[7]. The theory in this case used Whitham’s single-phase
averaged variational principle [8] describing adiabatic evolu-
tion of the excited synchronized state. A similar approach
was also applied to studying nonlinear mode conversion in
the system of two weakly coupled SG equations with slow
parameters [9]. The present work comprises an extension of
the idea of control of SG waves by synchronizing, varying
frequency perturbations to the simplest multiphase solutions,
i.e., breather and plasma oscillations. Recently, Khomeriki
and Leon [10] suggested a different synchronization ap-
proach to excitation of these solutions. They studied constant
frequency, but varying amplitude oscillating boundary con-
dition in the SG problem and used different forms of varia-
tion of the amplitude and weak damping to arrive at one of
the two stable attractors in the system. Here, we consider
undamped, perturbatively driven SG system and suggest
recipes for excitation of these solutions by passage through
resonances. Our presentation will be as follows. Section II
will demonstrate excitation and control of large amplitude
standing SG waves by chirped frequency perturbations in
numerical simulations, focusing on plasma and breather os-
cillation cases separately. Section III will consider synchro-
nized evolution in more detail. In particular, we shall study
conditions for phase locking in our adiabatically driven sys-
tems and use a weakly nonlinear variant of Whitham’s aver-
aged variational principle in analyzing characteristic thresh-
olds on the driving amplitudes for capturing standing SG
waves into resonances. Finally, in Sec. IV we will present
our conclusions.

II. ADIABATIC SYNCHRONIZATION VIA NUMERICAL
SIMULATIONS

A. Synchronized plasma oscillations

We proceed by illustrating the idea of controlling plasma
oscillations by synchronization in simulations. We solved Eq.
(1) numerically, subject to zero initial and periodic boundary
conditions. The simulation used a standard pseudospectral
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FIG. 1. The emergence of plasma oscillations by synchroniza-
tion. (a): Energy E; versus time (thick line). The ideal synchronized
state is shown by a thin line. The dotted line represents evolution of
E; in simulations for € slightly below threshold. (b), (c), and (d):
The numerical wave forms in three small time windows of duration
Ar=20 at different stages of evolution. Location of these windows
is shown by bars on the ¢ axis in (a).

method [11]. The accuracy of the solution was tested by
varying the number of spatial harmonics and the time step.
Our driving perturbation was a small amplitude standing
wave

ef(t)=¢ cos(27rx/L)cosf w(r)dt. (3)

The driving frequency in Eq. (3) decreased linearly in time,
w(t)=wy—at (a<<1), passing, at r=0, the linear resonance,
w=w,=[(27/L)*>+1]"2, with small amplitude plasma oscil-
lations of the ideal (¢=0) SG system.

The simulation results presented in Figs. 1(a)-1(d) illus-
trate a large amplitude standing wave emerging from zero
after passage through resonance. The thick line in Fig. 1(a)
shows the evolution of “energy” E;=(0.5(u’+u>)—cos u);
+1, where (- -+), =L~! [5(- - \)dx represents averaging over one
spatial period. The energy is time independent for plasma
oscillations of the ideal SG system (see the Appendix) and its
increase with the decrease of the driving frequency w(¢) in-
dicates excitation of a growing amplitude wave. We used the
parameters L=7, a=1.5X 1074, £=8.25X 1073, and initial
time #;,=—1000 in our simulations and switched off the driv-
ing function at t=#,=2500 (note that E; remains constant
beyond this time). Figures 1(b)—1(d) show the actual numeri-
cal wave forms as observed in three narrow time windows of
duration Ar=20 at different stages of excitation. The short
bars on the ¢ axis in Fig. 1(a) indicate positions of these
windows, i.e., just beyond the linear resonance [r=100, Fig.
1(b)], at some intermediate stage [¢=1000, Fig. 1(c)], and at
1=2800>1; [Fig. 1(d)]. These results show that the excited
wave is indeed continuously phase locked in both space and
time with the driving standing wave. The spatial phase lock-
ing (the location of the wave maxima remains at x=L/2 at all
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times) is obvious, while one also notices that the frequency
of temporal oscillations of the wave form decreases as one
passes from Fig. 1(b), through Fig. 1(c) to Fig. 1(d), follow-
ing the decrease of the driving frequency. One also finds
numerically that the growing amplitude wave [as in Figs.
1(b)-1(d)] beyond the linear resonance emerges only if the
driving amplitude exceeds a threshold. Theoretically, this
threshold scales as &,,=3.8w*a™* [see Eq. (27) in Sec. III].
In our case, g,=8 X 1073, so €=8.25X 102 in simulations
[the thick solid line in Fig. 1(a)] is slightly above the thresh-
old. The dotted line in Fig. 1(a) shows a similar simulation,
but for £=7.95X 1073, i.e., just below the threshold. We see
that the energy in this case saturates at some relatively low
value. The simulations also showed that the phase locking
between the wave and the drive in this case was destroyed
near the linear resonance. Furthermore, we found that if the
driving field is switched off as in Fig. 1, the resulting solu-
tion remains numerically stable for times much longer than
those shown in the figure. Nevertheless, if the drive is
present beyond f;, but the driving frequency remains con-
stant, the excited wave remains phase locked with the drive
for some time, but then develops an instability, destroying
the phase locking at later times. This instability growth rate
increases with &, so reaching larger plasma oscillation ener-
gies by synchronization approach requires smaller £ and,
therefore, smaller driving frequency chirp rate due to the
threshold phenomenon. In order to qualitatively test the form
of the excited wave and synchronization in the system, we
have assumed the existence of an ideal synchronized state
beyond the linear resonance, as described in the Introduction,
and found parameters of this state by solving the system of
algebraic equations

Y-8 =(1-AH/(1+A%, (4)
BA(m; - A%) = (A? —m3) = AX(1 + AD) 2, (5)
B=4K(m)/L; y=4K(m,)w(t). (6)

Then, we substituted these parameters in the expression for
the energy of plasma oscillations of the perfect SG equation
(see the Appendix)

E,=8Ay'm*(1 = m3)[m; = 1 + E(m,)/K(m))],  (7)

where E is the complete elliptic integral of the second kind,
and presented the results in Fig. 1(a) by a thin line. We
observe that beyond linear resonance, E; in simulations (the
thick line) performs small oscillations around a monotoni-
cally growing energy predicted via the ideal persistent syn-
chronization assumption. We shall show below that these os-
cillations comprise the characteristic signature of phase
locking in the driven system and that the frequency of the
oscillations scales as £!2. This completes our numerical il-
lustration of synchronized plasma oscillations and we pro-
ceed to the excitation of periodic SG breathers.

B. Synchronized breather oscillations

In forming periodic SG breathers by synchronization we
again start from zero initial conditions. However, breathers
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FIG. 2. The emergence of breather oscillations by a synchroniz-
ing perturbation. (a): Energy E; versus time (solid line). The ideal
synchronized state is shown by triangles (A <A,,;,) and circles (A
>A,in)- (b), (¢) and (d): The wave forms in three time windows of
duration Ar=40 at different stages of evolution. Location of these
windows is shown by bars on the 7 axis in (a). One observes exci-
tation of a uniform time-synchronized state in (b) and (c), while (d)
corresponds to a spatiotemporally synchronized breather state.

do not have a linear limit, and, therefore, one needs a differ-
ent driving strategy. The idea is to excite spatially a uniform
solution, u(f)=4 tan~'[Asn(yt,m,)] (pendulum oscillations),
of the SG equation first (these oscillations have a linear
limit) and adiabatically transform this solution into a
breather at a later stage. This goal is achieved by using a
spatially modulated driving oscillation of the form

ef(x,t) = e[ 1 + r cos(kyx)]cos f w(t)dt, (8)

where the driving frequency w(z) decreases, passing the lin-
ear resonance with pendulum oscillations (w=1), and we
shall again use a linear frequency sweep, w(t)=1-ar, in the
simulations. Parameter r characterizing the spatial modula-
tion in the drive is kept to zero for <0, but is switched to
r=1 at t=0 and stays constant at later times. The reason for
having r=0 prior to the linear resonance is to prevent pas-
sage through w=wy=[(27/L)?+1]"? resonance yielding ex-
citation of the plasma oscillations, as described above. Thus,
we employ a different resonance, yielding excitation of a
different solution branch. We again solve Eq. (1) numeri-
cally, using zero initial (at ¢;,=—1000) and periodic boundary
conditions and present the simulation results in Fig. 2.
Figure 2(a) shows the evolution of energy E;. We use
parameters L=7, a=2.5X 107, e=12X 1073 and switch off
the driving function at r=1,=2500 (E; again remains constant
beyond this time). Figures 1(b)-1(d) show the actual numeri-
cal wave forms as observed in three narrow time windows of
duration Ar=40 at different stages of excitation. The bars on
the 7 axis in Fig. 3(a) indicate the positions of these windows,
i.e., just beyond the linear resonance [t=100, Fig. 2(b)], at
t=1000 [Fig. 2(c)], and t=2800>t, [Fig. 2(d)]. We observe
the emergence of a nearly uniform solution after the passage
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FIG. 3. The modulational instability of a synchronized uniform
state. (a): The evolution of energy E for vanishing spatial modula-
tion parameter r in the driving function. The excited temporally
synchronized state becomes unstable at t=t,, as the amplitude A of
the driven solution exceeds A,,;, for existence of breather oscilla-
tions. (b): The wave form at the onset of modulational instability in
a time window [indicated by a bar on the 7 axis in (a)] around ...

through resonance in Figs. 2(b) and 2(c). The spatial modu-
lation in the drive is nonresonant at this stage and has little
effect on the excitation process. Consequently, we form a
growing amplitude solution of u,+sin u=g cos [ w(t)dt by
passage through resonance. This adiabatically driven pendu-
lum problem was studied earlier [7]. It was shown that the
synchronization (phase locking) followed by efficient excita-
tion of the pendulum to high energies and approach to sepa-
ratrix, is possible, as the amplitude of oscillations approaches
7 for w(f)—0, provided the driving amplitude ¢ is large
enough. We shall make this statement more accurate in Sec.
IIT showing that similarly to the plasma oscillations case, &
must exceed a sharp threshold, &,,=3.3a** [see Eq. (32) in
Sec. IIT], for excitation of a synchronized spatially uniform
SG solution. In terms of our breather solution, the uniform
solution corresponds to a situation, where m;=0. Conse-
quently, beyond the linear resonance (¢>0), all
parameters are functions of time only, u=u(?)
~4 arctan[Asn(yt,m,)], where m,~A?, y(1+A?)=1 and, in
the synchronized state, {)=~4 K(m,)/y=~ w(t). These three
algebraic relations define the ideal, temporally synchronized
solution emerging beyond the linear resonance in Figs. 2(b)
and 2(c).

The character of the solution in Fig. 2 changes when am-
plitude A of the excited wave exceeds (at t=z,.~1400) a
critical value depending on the periodicity length L of the
system. We see that the solution in Fig. 2(d) develops a sig-
nificant spatial modulation. We also find in simulations that
the transition from uniform to spatially modulated case oc-
curs for L>2 only (L=7 in our example) and that the
critical value of A coincides with the minimum amplitude
Apin=k"'=(k2=1)"2, k=27/L for the existence of breather
oscillations. Furthermore, the emerging beyond the A, spa-
tially modulated state is, in fact, the desired breather oscilla-
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tion synchronized with the drive (see below). The excitation
of the synchronized breather state [as illustrated in Fig. 2(d)]
required a nonvanishing modulation parameter r at 7., in the
driving function. Indeed, Fig. 3 shows simulation results for
the same parameters and initial conditions as in Fig. 2, but
r=0 at all times.

One observes the saturation of energy [Fig. 3(a)] as the
driven uniform state becomes modulationally unstable be-
yond 7.,.. The actual wave form at the onset of the instability
(in the time widow A¢=120 around ¢,,) is shown in Fig. 3(b).
The modulational instability of the uniform state of the ideal
SG equation is well known [12]. The temporal synchroniza-
tion in our simulations allows a slow approach to modula-
tionally unstable region. At the onset of instability of the
uniform solution, the amplitude A is the same as the mini-
mum amplitude A ;, of the breather solution, while the spa-
tial period of small oscillations of F(x) in the breather (2) is
equal to periodicity length L in the problem, i.e., «
=B/ K(mj=~0)~2vAi,=27/L [12]. Therefore, the modu-
lational instability of a temporally synchronized state in the
driven system proceeds at time t=¢,. such that a new spa-
tiotemporal resonance condition is satisfied in the system,
i.e., k=27/L and Q=w(r). The addition of spatial modula-
tions in the drive affects the nonlinear development of the
resonantly driven wave, prevents development of modula-
tional instability, and leads to the emergence of a stable,
growing amplitude breather oscillation, as the spatiotemporal
synchronization continues despite a variation of the driving
frequency. The temporal synchronization is seen in the se-
quence of the wave forms in Figs. 2(b)-2(d), where the de-
crease of the frequency of the driven wave reflects the de-
crease of the driving frequency. The spatial synchronization
beyond z., is reflected in the spatial symmetry of the emerg-
ing breather oscillations with respect to the center (x/L
=0.5) of the periodicity length, the same symmetry charac-
terizing spatial modulations of the driving function. A quan-
titative test of the synchronization can be performed by com-
paring our simulation results for E; [solid line in Fig. 2(a)]
with those for breather oscillations of the ideal SG equation
[A and circles in Fig. 2(a)] given by (see the Appendix)

E, =8Y*A’E(m,)/K(m,), )

where one uses parameters of the ideal spatiotemporally syn-
chronized solution. The parameters in this formula are given
by a set of algebraic equations (see the Introduction):

B=vA; B=2K(my)/L; my=2K(my)w(); (10)

AX1-md)=mdA’= (¥ + B> - 1. (11)

This system yields a solution for A>A,;, only and the cor-
responding E; is shown by circles in Fig. 2(a). For A
<Apin We set m;=0 (this is the temporally synchronized
uniform state), so the second equation in (10), describing
spatial synchronization, is irrelevant, leaving us with a sim-

plified system
my=2K(my)w(t); my=A*A*+1=7y" (12)

for m,, A, and 7. The solution of this system, substituted into
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FIG. 4. Two successive excitation and deexcitation stages of
synchronized breather oscillations controlled by an oscillating driv-
ing frequency. (a) The energy E; versus time. The horizontal line
shows E; corresponding to A=A,,;,. Breather oscillations exist in
regions A>A, ;. only. (b): The driving frequency w versus time.
Synchronization intervals correspond to w<<1. The drive is out of
resonance for w>1, so E; is small in the corresponding time
intervals.

(9) yields E, shown by the triangles in Fig. 2(a). At A
=Ain» the solution of (12) passes continuously to that of
Egs. (10) and (11) and the wave transforms into a breather
oscillation. Figure 2(a) shows a good agreement between the
time averaged evolution of E| from the simulations and that
predicted by the ideal persistent synchronization assumption.

Our final calculation will illustrate that the choice of /lin-
ear frequency chirp is not essential for emergence of syn-
chronized states of the driven SG system. We find that any
monotonically decreasing driving frequency, passing through
the linear resonance, yields synchronization, provided its rate
of variation is small enough. Furthermore, if excited, the
synchronized solution u(x,f) can be returned to its nearly
vanishing initial state by simply reversing the direction of
slow variation of the driving frequency. We illustrate these
effects in Fig. 4(a), showing energy E, of the solution ex-
cited by the driving perturbation of form (8) having an os-
cillating frequency [Fig. 4(b)], w(t)=1-asin(at/a), 0<a
< 1. For ar<<1, as before, w(f)=1-at, but the driving fre-
quency reaches its minimum at r=¢,=ma/(2a) and returns to
a linearly resonant value, w=1, at t=2¢,. Figure 4(a) shows
the evolution of energy for two successive periods of oscil-
lations of the driving frequency. The parameters in these
simulation were L=7, a=2.5X107, £=1.5X10"2, a=0.5,
and we used zero initial conditions (at fo=—7,/2). In order to
prevent the excitation of plasma oscillations, we again set the
modulation parameter r=0 in (8) in time intervals, where
w(t)>1, while r=1 for w(r)<1. We see two periods of ex-
citation and deexcitation of the synchronized state in the fig-
ure. The energy of the solution is small when w(f) > 1, since
the driving perturbation is out of resonance in these regions.
In contrast, when w(7) <1, we excite a temporally synchro-
nized uniform state until A <A, [the energy level corre-
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sponding to A, is shown by the horizontal line in Fig. 4(a)].
This state transforms into a spatiotemporally synchronized
breather state for A>A,;, and the whole process is repeated
twice as the driving frequency goes in and out of resonance
in successive oscillations. This illustration shows that by es-
tablishing synchronization in the system, one is able to con-
trol the emerging standing wave via a single external param-
eter, i.e., the frequency of the driving perturbation. Next, we
present our theory of the aforementioned thresholds for adia-
batic synchronization of standing SG waves.

III. SYNCHRONIZATION THRESHOLDS
A. Plasma oscillations

The threshold for synchronization by passage through
resonance is a weakly nonlinear phenomenon and can be
conveniently studied by using a weakly nonlinear version of
the Whitham’s averaged variational principle [8], adopted to
our autoresonantly driven system. To this end, the driven
problem (1) is formulated via the variational principle

5dexdt=0, (13)
where, in the weakly nonlinear limit,

1 1
L(u,u,u,;x,t) = 5(14,2 - ufc )+ ﬂu“ + euf(x,1),

(14)

and f(x,1)=cos(kgx)cos [ w(t)dt. We assume a slow variation
of the driving frequency w(f), and, seeking an adiabatically
phase-locked plasma oscillation in the problem, and adopt
the following two-scale representation:

u = uy(t) + uy (£)cos(6;)cos(6s) + uy(1)cos(6;)cos>(6,),
(15)

where the time dependence in the amplitudes u,(¢) is slow,
the phases 0,(x)=kyx, 6,=6,(¢) are fast, but the associated
wave number ko=27/L is constant, and the frequency (2(z)
=d6,/dt is a slow function of time. Furthermore, since the
standing wave solution for the linear unperturbed problem is
u=u;cos(6;)cos(6,), uy=const, we order uy, in Eq. (15) as
O(Mf). We have already assumed phase locking between 6,
and the spatial driving phase kyx. We shall also assume that
the second phase, 6,, is locked with the driving phase
Jw(t)dt, but allow a small and slow mismatch ®(r)=6,
—fw(?)dr in the problem. The goal is to set up a procedure
for finding slow amplitudes u,(r) and phase mismatch ®(z).

Following Whitham’s approach [8], we substitute our
two-scale representation (15) into Eq. (14) and average the
result with respect to the fast phase variables, viewing the
slow time in the problem fixed. This yields an averaged La-
grangian

&€
<L>01,2 = A(uo,ul,uz; 02, (92,) = Au + Ab + EMICOS (I),

(16)

where
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9 1 1
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Note that 6, enters directly in Eq. (16) through & in the
driving term, but also via Q=d#6,/dt. By Whitham’s ap-
proach, the averaged Lagrangian (16) serves in the averaged
variational principle

and

3 3
A=t 22 02— g2
b 512“‘+32”2< ko=

5f Adxdt =0 (17)

yielding the desired equations. For example, variations with
respect to ug and u, in (17) yield

1
M0+ZM2=0, (18)

3 3 1
Eu%(ﬂz—k%— Z) - J40=0. (19)
The lowest order of (19) gives uy=0, and, therefore, from
(18), u,=0. Similarly, the variation with respect to u; yields

1
Z(QZ - w%)ul +—uj+

3 Ecos(D:O, (20)
128 2

where w,=(kj+1)"? is the linear response frequency of the
unperturbed system. Assuming a small departure from reso-
nance, ) = w,, we rewrite Eq. (20) as follows:

deo 3
=2~ gy ul - ¢ cos d, (21)
dt 64(1)0 2(1)01/!]
or for the phase mismatch,
dd do 3
— =2 _w-at- %— cos®, (22)
dt dt 64(,00 2(1)01/11

where w=wy—at is used for the driving frequency. Finally,

we take variation in (17) with respect to 6, yielding, to

lowest order, the desired evolution equation for u;:
%=—isinq>. (23)
dt 2w,

Equations (22) and (23) comprise a closed set of two slow
equations for the phase mismatch and amplitude of the
driven standing wave. We notice the possibility of having a
phase-locked, growing amplitude solution of this system be-
yond linear resonance (¢>0). Indeed, by requesting

a® 3

=~ qf — =0, 24
di Y Gday ! @4

one has u; =~ i1, = (8\aw,/3)t"?. In studying the stability of
this solution, we write u; =i+ du,, (ir; is viewed as slow
and |du, | <u,), differentiate Eq. (24) and substitute Eq. (23)
to get
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d*® 3eu,;

= o+
dr* 128w;

sin @, (25)

For a<1?=— 28&9 this equation predicts solutions oscillating

at frequency v~ 0(8” 2) around a small averaged value, i.e.,
phase locking in the system. These oscillations of @ lead to
the characteristic oscillating modulations of the energy, seen
in Fig. 1(a), as the energy increases in the phase-locked re-
gime of excitation. But, how does one get into this adiabati-
cally synchronized state by passage through the linear reso-
nance? This question leads to the problem of thresholds
which is discussed next.

Define new time and amplitude variables, 7=a!*t and A
=éa‘1’4(%0)1/2u1 and introduce complex function W
=A exp(i®). A simple test shows that WV is described by a
nonlinear Shroedinger-type equation

dv
i— + (1= VYV = p, (26)
dr

where ,u,—ﬁsway 2073 We seek the asymptotic solutions of

this equation at large positive 7 subject to zero initial ¥ at
7=—%. This would describe the passage through resonance
(at £=0) in our system. There exist two such asymptotic so-
lutions, the bounded solution W=Wexp(i7*/2), where ¥,
=const and phase mismatch ®=17>/2 increases in time, and
the unbounded solution ¥ =7'"2, where ®=0. It is this phase-
locked, growing amplitude solution, which describes the cap-
ture into resonance and synchronization in our system. But,
how the system chooses between the saturated (bounded)
and the growing synchronized solutions by starting from
zero at t—? The answer is simple: the bifurcation is con-
trolled by the single parameter u in the problem. Indeed, the
analysis of Eq. (26) for a different application[14] showed
that the autoresonant solution was obtained when u> u'
=0.411. Then, by transforming back to our original param-
eters, we obtain the threshold condition for synchronization
by passage through resonance in the driven plasma oscilla-
tions problem:

e>¢g,=3. 8(03/2 34 (27)

We find £..=0.008 for parameters of simulations in Fig. 4
(ko=0.9, @=0.000 15), which is in excellent agreement with
the numerical results.

B. Breather oscillations

Our simulations of synchronized breather oscillations
showed that similarly to plasma oscillations, the driving am-
plitude & must exceed a threshold for the excitation of a
spatially uniform solution in the first stage of formation of
breather oscillations. We study this threshold phenomenon in
the following. We focus on a weakly nonlinear stage of a
spatially uniform solution, where the corresponding La-
grangian (14) is
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1 1

L(u,u,;t) = —(u,2 —u’)+ —u*+ & cos f w(t)dt. (28)
2 24

Applying again Whitham’s approach [8], we proceed from

the two-scale representation of the solution of our driven

problem,

u(t) = u,(t)cos 0, (29)

where 6 is the fast angle variable, while u,(r), {(r)=6,, and
phase mismatch ®(7) = 0— [w(t)dt are slow. We substitute Eq.
(29) into Eq. (28) and average over 6 between 0 and 27r. This
yields the averaged Lagrangian

1 1
Nys0,6) = 5= i+ —ul+ Sucos @, (30)

where one assumes proximity to the linear resonance, i.e.,
Q) =1. Next, we use A in the averaged variational principle;
take variations with respect to € and u#; and obtain the fol-
lowing set of slow evolution equations:

uy,=—(e/2)sin®, @, =ar—u/16 - (e/2u;)cos .
31)

This system is similar to Egs. (23) and (22) discussed for
plasma oscillations above, and, therefore, can be analyzed
similarly. By rescaling, 7=a'"%t, Azia‘”“ul, and introduc-
ing the complex function ¥=A exp(i®), Egs. (31) yield the
same nonlinear Shroedinger-type equation (26) for W, where
now the parameter is ,u:éa‘ms. Thus, again, synchroniza-
tion by passage through resonance in the system takes place
for ©>0.411. This, in turn, by returning to our original pa-
rameters, yields the following threshold on the driving am-
plitude for excitation of breather oscillations:

g=33a"". (32)

This completes our analysis of the emergence of synchro-
nized plasma and breather oscillations by passage through
resonances in a periodic, driven SG system.

IV. CONCLUSIONS

In conclusion, we have studied the excitation of standing
waves of a periodic SG equation by passage through reso-
nances and synchronization. The passage allows efficient ex-
citation and control of large amplitude plasma and breather
oscillations in the system by starting from trivial (zero) ini-
tial conditions and using a weak [O(g)] forcing. Synchro-
nized plasma oscillations were formed by driving the system
by a small amplitude standing wave having slowly varying
frequency. Efficient excitation of synchronized breather os-
cillations, in contrast, required driving by a combination of a
chirped frequency oscillations and a standing wave. The
thresholds for capture into resonance and modulations of
slow parameters in the system, oscillating at O(g'?) frequen-
cies, are the main signatures of synchronized standing
waves. Plasma and breather oscillations studied in this work
are the simplest two-phase waves in the periodic SG system.
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Excitation and control of more general, multiphase SG solu-
tions by passage through resonances seems to comprise an
interesting direction for future research. We believe that the
inverse scattering transform method [15] yields the proper
theoretical framework for studying these most general exci-
tations, similarly to recently studied synchronized multiphase
solutions in periodic KdV and NLS systems [1,2]. The sim-
plicity of the forcing used in exciting multiphase solutions in
these systems may be a bridge between physics and pure
mathematics in the field, making the generation and control
of nontrivial multiphase wave forms experimentally realiz-
able.
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APPENDIX: ENERGY E; FOR STANDING SG WAVES

By multiplying our driven SG equation (1) by u, one can
rewrite it in the form

{%(utz +u?) - cos u} — (uu,), = ef(x,t)u,. (A1)

t

Then, for spatially periodic solutions, by averaging in (Al)
over one spatial period L, we find

dE/dt = - &(f(x,0)u,);, (A2)
where the “energy” is defined as
L2,
E = E(u, +u)—cosu) +1. (A3)
L

Therefore, spatially periodic breathers and plasma oscilla-
tions of the ideal (¢=0) SG equation conserve E;, while
small & drive yields a slow time variation of E;. The driven,
synchronized standing SG waves described above preserve
the form, but slowly change their characteristic parameters to
stay in resonance with driving perturbations. Therefore, the
calculation of slow “energy” E; during the evolution yields
useful diagnostics of the excited solution. Next, we relate E;
to standing wave parameters in the ideal SG case.

We write the standing wave (2) as u=4 tan™!
=F(x)G(t). Then

w, w(x,1)

4FdGldt

2 0 U=

4GdFldx

u,= .
1 +w?

I+w
Since, in the ideal SG case, E| is independent of time, we
can evaluate the average (A3) at any value of =¢, in G(¢). In
the case of breather oscillations, F(x)=Adn(Bx,m;) and
G(r)=sn(yt,m,), and we choose #,=0, so that G(¢,) vanishes.
Then  wi(x,7))=0, u(x,t)=0, u/lx,t)=0, dG/dx,
=yen(yty, my)dn(yty,my) =7, and Eq. (A3) yields
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1
Ey= (), =8AT X (Brm)). (A4)

Here we use the functional relation dn’=1-m?sn?> and
(sn®(Bx,m,)y =m;*[1—=E(m;)/K(m,)] from [13], to obtain
the final result

E, =8A%Y’E(m,)/IK(m,). (A5)

In the case of plasma oscillations, F(x)=Acn(Bx,m;) and
G(t)=cn(yt,m,), and we again choose 7, such that G(f,) van-
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ishes [i.e., y1y=K(m,)]. Then, similarly to (A4), we find
E, =8(dG/d1g)*(cn*(Bx,m)));.

Using the relations cn’=1-sn?  d[cn(yty,m,)]/dt,
=—vydn(yty,m,)=—y(1-m3)"%, and the same expression for
(sn?); as above, we arrive at

E,=8A2Y'm*(1 —m3)[m; - 1 + E(m,)/K(m})] (A6)

for plasma oscillations.
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